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A combination of the Busemann ellipse, the inscribed unit circle and a circle of radius 42 about the same centre is considered. 
For supersonic hvo-dimensionai potential gas flows, it is shown that the inclinations of the velocity vector in motion along an 
arbitrary characteristic, the characteristic itseif and the characteristic of the other family have vahtes equal to, respcctiveIyz the 
difference between the areas of the elliptical and circular (R = 1) sectors, the difference between the areas of the elliptical and 
circular (R = 42) sectors, and the area of the elliptical sector, apart from unimportant multiplicative and additive constants. The 
straight sides of the sectors in question are the semiminor axis of the eliipse and the radius vector of the velocity. The obvious 
analogy with one of Kepler’s laws is pointed out. The existence of a point of intersection of the eliipse and the second circle 
iilustrates a weU-known result of Khristianovich concerning the points of inflexion of characteristics with a monotone velocity 
distriiution. It is shown how the combination of the ellipse and the inscribed circle iihtstrates the simplification of the compatibility 
conditions and the Darboux equation for tram- and hypersonic flows. 0 1998 Ekcvier Science Ltd. Ah rights reserved. 

1. We consider sulpersonic two-dimensional potential flows of an ideal (non-viscous and non-heat- 
conducting) gas with adiabatic exponent K. As is well known [l-3], the Busemann ellipse (Fig. 1) gives 
a graphical representation of the reduced velocity X as a function of the Mach angle a. In Fig. 1 the 
value of h is represented by the modulus of the radius vector OL and the angle 01 is measured from the 
semimajor axis in the clockwise sense. In what follows h = q/c*, where q is the modulus of the velocity 
vector, c is the velocity of sound, c* is the critical velocity and J4 = q/c = l/sin 01 is the Mach number. 
With this notation, the semimajor and semiminor axes are equal respectively to od = k = d((x + 1)/(x 
- l)), oc = 1. Moreover, if an additional vertical line is drawn, parallel to the semimajor axis and passing 
through the point c (Fig. l), the graph yields information on the relationship between the reduced 
velocity, the Mach number and the quantity m = d(M2 - l)-these three quantities are represented in 
Fig. 1 by the segments oL, OM and CM. 

But the properties of the Busemann ellipse are by no means exhausted by these facts. As it turns 
out, the graphical combination of the ellipse with two circles of radii 1 and 42 about the centre of the 
ellipse (Fig. 2) yields information on the dependence of the inclinations of the velocity vector (0) and 
the characteristics of the first (CL+ = 8 + a) and second (p- = 8 - o) families on cx, A, M and on one 
another in motion along an arbitrary characteristic of the first or second family. 

We will find it more convenient to use the functions h(M),fo and@), in terms of which the angles 
0, CL+ and Jo- on the characteristics of the first and second family, respectively, are expressed as follows: 

e=e,+hw, p+=e,+%+g(M), p-=e,-t+f(M) 

e=e,-h(M), p+=e,+E-f(M), p-=e, -;-g(M) 

where 0, is the value of 8 at the sonic point of the characteristic, and the functions themselves may be 
written, using the ratio k of the semi-axes of the Busemann ellipse (see above), as follows: 

h(M) = k arctg(k-l&&i) -arctgJE 

f(M) = h(M) + 0, g(M)=h(M)-o. 0=x/2-a 

Let us consider also the elliptical sector and two circular sectors formed by the semiminor axis oc 
and its continuation (Fig. 2), the radius vector OL and its continuation and the arcs of the ellipse (sector 
Lot, of area s), the circle with R = 1 (sector Lloc, of area ~1) and the circle with R = 42 (sector L9c2, 
of area 9). 
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Theorem. The functions h(M), f(M) and g(M) may be expressed as follows in terms of the areas of 
the three sectors 

h(M)=2(s-S,), f(M)=2s, g(M)=2(s-s,) 

In other words, h(M) is twice the area of the curvilinear triangle LcLi,f(M) is twice the area of the 
elliptical sector Lot, andg(M) is twice the difference between the areas of the curvilinear triangles LNLz 
and cNcz if h > 42 and twice the negative area of the curvilinear quadrilateral LLgg if h s 42, when 
OL passes below the point N, including the case where the point d2 coincides with d or lies below it. 
The latter occurs when x 5 3. 

Proof. Besides the plane of the ellipse, let us consider a plane w passing through the semiminor axis 
of the ellipse and making an angle cp with the plane of the ellipse such that cos cp = k-i. With cp chosen 
in this way, the projection of the ellipse onto w is a circle of unit radius and the projection of the elliptical 
sector Lot is a circular sector with angle l3 and area S, such that 

tgP=Ptgw, S, =p/2=k-‘s 

Hence it follows that 2~ = k arctg (k-l tg CO). Noting that o = x/2 - a = arctg @f2 - l), 2Fi = CO and 
using the formula for h(M), we finally obtain h(M) = 2(s - si), which proves the first statement of the 
theorem. Using the definitions of the functionsf(M) andg(M) and the equalitys2 = 2ri, one can readily 
prove the remaining two statements. 

A few corollaries of the theorem follow. 
1. Note the analogy with one of Kepler’s laws, which is also based on an analysis of the variation in 

the area of a certain sector cut from an ellipse; except that in Kepler’s law the focus of the sector coincides 
with that of the ellipse [4]. For a deeper analogy with Kepler’s law, the first and most significant relation- 
ship of the theorem may be reformulated as follows: in motion along an arbitrary characteristic, equal 
increments of the inclination 0 of the velocity vector define equal increments of the areas of the 
curvilinear quadrilaterals bounded by arcs of the Busemann ellipse, the inscribed circle and the 
corresponding radius-vectors. 

2. The first relationship of the theorem implies a formula for the increments de = 7(h2 - l)da 
along a characteristic, which is clearly equivalent to the more familiar formula d0 = +d(M’ - 1) d In 
h [l-3, 5, 61. In what follows, the upper (lower) sign relates to characteristics of the first (second) 
family. 

3. The third relationship of the theorem clearly illustrates and refines a result obtained in [3, 51, 
according to which, in motion along any characteristic, the derivative of the inclination of the 
characteristic, d(9 + a)/dh, vanishes and changes sign at h = 42; we can now add that the last equality 
is independent of K, unlike the corresponding equality for M = 2./d@+) [3, 51. Naturally, this is 
meaningful only if K < 3, when the Busemann ellipse and the circle with R = 42 intersect. 
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2. We will now consider the relation between the geometry of the Busemann ellipse and simplifications 
of the compatibility conditions and Darboux’s equation in both limiting cases, when w = x/2 - a Q 1 
and 014 1. Indeed, as shown previously, the area S, of the curvilinear triangle Lx& is directly related 
to the function h(M): h(M) = 2.~~. The fact that the arcs of the ellipse and the circles touching at x are 
second-order curves implies that if o * 1, then s, - 03; simple geometric calculations imply that if 
o + 1, the following forms of the compatibility conditions are equivalent 

(3Th(M)=(3T2s ,~+!L=erZ(M2-1)~ 
c 

3x+1 3 
= const 

x+1 (2-l) 

The last of these redationships are known as the compatibility conditions for transonic flows [7]. 
In the second limiting case, a 4 1, the compatibility conditions are more conveniently expressed in 

terms of the area sd of the curvilinear quadrilateral &Lid1 formed by the radius vector, the arcs of the 
ellipse and the inscribed circle, and the semimajor axis. It is immediately clear that S, = Q/(X - 1) for 
a Q 1, whence we obtain the following chain of equivalent compatibility conditions for a 4 1 

6i(h(M)-h(=))=8f2s, =e* $=Br&=const (2.2) 

The last of these relationships are well known in hypersonic flow theory [6]. 
Let us consider the Darboux equation for the stream function w in the plane of the Riemann invariants 

~=CJ-h(M),~=8+h(it4),whichh Id f o s or supersonic two-dimensional potential flows 

\~r,,~-G(q-5)(ty,,-yg)=0, G= M4(x+1) 
.8(M2 -l)% 

(2.3) 

As it turns out, formulae (2.1) and (2.2) and, in particular, the asymptotic expressions for s, (o 4 1) 
and sd (cc Q 1) graphically illustrate simplifications of Eq. (2.3) which are obtained when o 4 1 and 
when a Q 1. Indeled, it is obvious from (2.3) that G is inversely proportional to the quantities s, 
(o 4 1) and sd (a 4 1). On the other hand, if the Riemann invariants are suitably chosen, s, and sd are 
also directly proportional to their difference. 

After simple reductions in the case when w 4 1, we obtain expressions for Eq. (2.3) and for the 
Riemann invariants 

v,c -&w, -wg)=w f +&pl-wg)=O 

54_2s, =e_yy , 2 (M2 -l)% 
~j=e+2~,=8+~ 

x+1 

(2.4 

The second of these equations is known as the Euler-Tricomi equation for transonic flows [7]. 
Now, letting a 4 1, we. deduce from (2.2) that a suitable choice of Riemann invariants is provided 

by E and 6 as given by the formulae 

2a 
E=e+2sd=e+-, 

x-l 
tj=e-2sd =fj_2a 

x-l 

after which Eq. (2.3) may be written as 

x+1 
‘6~ - 8(x - 1)~ (Ws-vE)=W&+ 2(x$gfdf~)=0 (2.5) 

The second of Eqs (2.5) was first derived, by a different method, in [8]. 



920 A. I. Rylov 

Finally, we write Eqs (2.4) and (2.5) in terms of new variables 8, s = S, and 0, z = sd, respectively 

wee -$w, + x+1 
4(x - 1)z 

yz=o (CHl) 

A comparison of these equations shows that the singularities obtained as one approaches the sonic line 
(SC = s + 0) and the vacuum line ($j = z -+ 0) are quite different in nature. This was already observed 
in [9], using other equations. 
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